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AbslracL The N&l vector of a small antiferromagnetic particlecan resonate between degenerate 
directions. The total moment of the particle will generally be non-zero, and this resonance cannot 
then occur without transverse anisotropy. Previous work is extended to include such anisotropy 
via a two-spin model representing the two sublattice moments. The WKB exponent in the rumel 
splitting is found exactly when the sublanice moments are equal, and by a variational method 
thaf holds over the entire parameter space when the moments are unequal. 

1. Introduction 

Consider a small (- SO A radius) antiferromagnetic (AFM) particle at a temperature well 
below its anisotropy gap, in zero magnetic field. Let us assume a simple two-sublattice 
AFM, and denote the sublattices A and B, and the easy direction for the moments by fi. 
This system has a classical ground state where moments on A point along i and on B along 
-2, and another state, degenerate with the first, obtained by reversing all the moments. 
One can now envisage quantum mechanical resonance between these degenerate states, and 
since this would require the simultaneous tunnelling of - lo5 moments, this would be an 
example of macroscopic quantum coherence (MQC) according to Leggett [I]. 

The above system was proposed as a candidate for MQC in parallel by Barbara and 
Chudnovsky 121, and by Krive and Zaslavskii [3] shortly after a similar proposal [4] for 
ferromagnetic FM particles [SI. The vast majority of macroscopic systems are unsuitable 
for the observation of MQC simply because the tunnelling frequency (or splitting) is 
astronomically small, although even for those that pass this test, formidable obstacles remain, 
arising from the inescapable environmental interactions [I]. It is in the first regard that AFM 
particles are attractive candidates for MQC. To see this, note that the tunnel splitting A for 
a degenerate double-well system is generally given by 

where U is the barrier between the wells, WO is the small oscillation frequency in one of 
the wells, a n d ~ c  and c’ are constants of the order of unity. The energy barrier is governed 
by anisotropy and is similar for both FM and AFM particles. Taking an anisotropy energy 
of IO5 erg ~ m - ~ ,  we obtain U rz erg in both cases. The frequency WO is the 
AFM or FM resonance frequency (wAFM or wpM. respectively) and these are very different: 

t Present address: Department of Physics, University of California, San Diego. 9500 Gilman Dr.. la Jolla, CA 
92093. USA. 
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WAFM a (HaH,)i/2, while m m  a Ha, where He. and Ha are the exchange and local 
anisotropy fields, respectiveIy. Since H,/H, can be as large as lo4, WAFM can be much 
larger than WFM,  and is often - 10l2 s-', yielding ROAM N IO-'' erg. This gives hope 
that the exponent in (1) will not be too large (less than 30, say) for AFM particles. 

Though (I)  provides an adequate first estimate, a proper calculation of A is somewhat 
harder. As noted in [Z], a finite-sized AFM particle will have unequal numbers of A and 
B lattice sites, giving a net or uncompensated magnetic moment M, which must reverse 
direction along with the NEel vector f. Experimental detection of MQC would be most 
simply done by looking at the reversal of MT. Early calculations, however, were done 
using a Lagrangian for the Niel vector (a non-linear sigma model), effectively assuming 
equal sublattice moments, and an anisotropy energy with exact cylindrical symmetry. But, 
with such symmetry, M .i is strictly conserved and cannot tunnel at all, so that if one is to 
connect with real experiments, and theoretically understand particles with equal sublattices, 
one must at the same time include transverse anisotropy. A model that does this is introduced 
in section 2. We will see below (section 3) that the WKB exponent in A is given by the 
least value of a certain action, so the problem is effectively one of classical mechanics. 
With cylindrical symmetry one has enough conserved quantities to solve this mechanical 
problem completely. When transverse anisotropy is included, this is not so. It is OUT goal 
in this paper to study the problem with transverse anisotropy. We will solve the problem 
exactly for equal sublattice spins (in spite of the lack of integrability) in section 4, and then 
variationally for unequal spins in section 5. A comparison with previous work (section 6) 
concludes the paper. 

Readers who do not wish to see the details of our solution should read section 2 where 
the model and basic parameters are introduced, skip to (6) which relates A to the least action, 
and skip again to our final result, contained in (25) and (26), and the ensuing discussion of 
this result. 
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2. The two-spin model 

The above situation is summed up in figure 1. We note that a calculation including transverse 
anisotropy that holds close to the X-Y or easy plane limit has previously been done by 
Loss and co-workers [9]. They start from an indirect model, consisting of an AFM spin 
chain, and a single large spin representing the excess moment, to which the spins in the 
chain are coupled with alternating sign. We study instead a more obvious model where we 
treat the total moments on each sublattice as spins of large, fixed, unequal magnitudes [IO]. 
Denoting their directions by unit vectors A, and Ab, we have the Hamiltonian 

x('&,, ~ b )  = J f i a  ' Ab - (Kt~fi;~ + K&'h;z). (2) 
e=a.b 

Here J >> K,, > 0 is the exchange energy, and the Kj, values are anisotropy energies. We 
take Ki, = N,ki, where N ,  (or =a, b) are the numbers of sites in the two sublattices, and 
kl > k2 > 0. It is convenient to define 

N = Na -k Nb p = (Na - N b ) / N .  (3) 

t Precisely such a detection of MW has been claimed in pmicles of ferritin [6]. although one of us has argued 
that this claim is implausible 17.81. 
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Figure 1. The parameter space of the MQC problem in small AFM particles. The encircled 
numbers denote the following: ~ I ,  the equal-sublattice. easy axis solution of 121 and [3]; 2, our 
exact equal-sublanice result (IO) for any K ~ I K I ;  3. the result of [9] close to the X-Y limit. 
Our variational result (25) and (26) holds over the entire parameter space. 

Table 1. The correspondence between this work and 191. E.. E,,,, and Eh denote the energy of 
the particle when all momenls lie along the easy, medium. or hard axes, respectively. 

Axeslenergy This work [9] 

easylmediumhard r l x l y  X I Y b  
Eh - Ee Nki  kz 
Em - 4 N(kt - k 2 )  ky 

p is thus the fractional excess spin. It is also convenient to write K1.2 = k l , z N / 2  and 

The correspondence between our notation and that of 191 is given in table 1 to assist in 
comparing our results with theirs. By equating differences in the energies of various spin 
orientations, we eliminate any possible confusion due to the choice of zero of energy, and 
we see that the coefficients ky and kz of [9] correspond to N ( k l -  k2) and Nkl , respectively, 
in our notation. 

The model (2) is often used to understand hulk AFM resonance and (with suitable 
gradient energies added) spin waves [Ill., It is useful to relate its parameters to WAFM 

and the transverse susceptibility XI. Due to the K2 term, we should distinguish two AFM 
resonance modes, and two XL values. Because I >> k l ,  kz, however, the difference between 
the XI values is negligible, but the same is not necessarily true of the resonance frequencies. 
Dropping terms of order kl /y, k l / y ,  we  have^ 

J = j N / 2 .  .~ ~ 

.. 

where uo is the particle volume, s is the spin on one site, and y is the spectroscopic splitting 
ratio. 
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3. The formalism for calculating tunnel splitting 

The quantal dynamics of the spins can be specified via an action to be used in a Feynman 
path integral. The Euclidean version of this action is given by [12] 

Ji-Min Duan and Anupam Garg 

S[h,(s) ]  = ifis Na 1 @&dr + 1 W h d r ) )  dr. (5 ) 

We have written zn = cos e,, where 0, and & are the polar angles of $&. Also, i, = dz,/dr. 
The tunnel splitting is readily formulated using (5) and instanton methods [13]. The central 
quantity in A is the WKB exponent (c’Uolplo~ in (1)) and this is given by the least value of 
S/h  subject to the boundary conditions ha(fca) = - h b ( z k o )  = ~ 2 .  The problem is thus 
reduced to finding the classical trajectory (the instanton) and the associated action. 

We briefly note that the first term in (5) gives rise to interference effects that have 
been studied in several papers recently [9,14,I5]. What happens is that there are symmetry 
related instantons with the same value for the real part of the action, but whose imaginary 
parts differ by 2 k N s  due to the first term in (5). For our problem, this phenomenon is 
entirely equivalent to Kramers’ theorem, which states that all energy levels are degenerate 
if the total spin N s  is a half integer, and which therefore implies that A = 0 strictly. If N s  
is an integer, the interference is constructive, and A is twice the single instanton answer. 
Since N s  is a half integer if and only if the excess spin N p s  is, the final answer for A can 
be written as 

(6) 

u=a.b 

2coAme-sc1’lr N p s  = integer 
0 N p s  =half integer. 

A = [  

Here S,l is the least action, and c is a single-instanton determinantal prefactor [I61 that we 
shall not find as it affects the answer only weakly. 

The equations of motion for the instanton, i.e., the Euler-Lagrange conditions, are easily 
found to be 
iNafisia = J[(I - z,Z)(I - z~)]”* sin(ba - 4) - - 2:) sin wa 

0)  

and an identical pair obtained by interchanging the subscripts a and b everywheret. It is 
easy to see that the energy E(%, h b )  is conserved, but that the total spin along the I axis, 
N,z, + N b z b .  is not conserved due to the presence of the K2 terms. 

Because the energy is conserved, there can be no real trajectory connecting our initial and 
final states. To decide which of the components of the trajectory should be made complex, 
it is very useful to think, in terms of a discrete WKB approach 1171. Imagine rewriting the 
Hamiltonian (2) by formally replacing ha and f i b  by scaled spin operators, s,/S, and s!,/$b. 
If we expand the wavefunctions in the lma, mb) basis, where S:lm,, m b )  = malm,, m b )  etc, 
then Schrodinger’s equation becomes a recursion relation for the expansion coefficients. 
We now view this recursion relation as a tight-binding model for an electron moving on 
a two-dimensional lattice with slowly varying site dependent hopping matrix elements and 
on site energies. The discrete WKB approach is equivalent to solving this problem using 
semiclassical electron dynamics, with za and zb as the position coordinates and and 4 as 
the crystal momentum components. The corresponding semiclassical equations are precisely 
(7). While this insight does not make the actual calculation any easier, it does suggest that, 
as for a continuum problem, we take the positions za and Zb to be real and to lie in the 
interval [ - I ,  I], and allow the momenta, i.e., @a and 4, to become complex. 

iN&& = J[Zb - Zd(1 - Zl)/(1 - Z~)I1’COS(& -‘$I)] - 2 Z a ( K 1 n  - KzaCOSZ’$a) 

t These equations are also profitably viewed in Cartesian components. 
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4. Equal sublattices-the exact solution 

We now present the exact solution when Nu = Nb. Our problem is not among the class of 
integrabkmodels of pairs of interacting spins found by Magyari et a1 [181, so one cannot 
solve the equations of motion for arbitrary initial Conditions. There is no bar, however, to 
finding a special solution, which is all we need. Indeed, one can see from (7) that if either 
of the following sets of conditions holds at a given instant of time, it holds at all others: 
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Since these are met by our boundm conditions, the problem is effectively turned into an 
integrable single-spin problem. Energy conservation shows that @a is constant in time for 
both types of solution. For type (I), we have 

z,=-tanhwrr ~ o ~ ~ @ ~ = ( y - t - k i ) / ( j f k z )  (9) 

The type (II) solution is obtained by replacing k l  and k2 by kl - k2 and -kz everywhere, 
and writing sin2 @a instead of cos2 @a in (9). In particular, the action is 

= 2Nhs log + F] . j - k2 J -k2  

These solutions are degenerate when k2 = 0, and go over into those found in [lo]. For 
k2 # 0, S[ c S~I, so the dominant contribution to the WKB exponent for A is given by SI. 
In the physically relevant limit when >> kl z kz, we can writes, % 4Nfis(kl - kz) /wl ,  
which is of the generic form (I), or SI o( ( x l ( k l  - k2))”’ as in [Z]. Another form that will 
prove useful later is 

s, = 2Iw,  (12) 

where 

I = ~ ( N ? ? S ) ~ / ~ J  (13) 

is the effective moment of inertia of the N6el vector. Note that I = xlvo/y2 .  

5. Unequal sublattic-a variational solutiou 

We now obtain a vaxiational estimate for the action for all values of kI/kI assuming only that 
p << 1, but non-zero. The conditions (8) no longer hold at all times, but it is apparent from 
(2) that the trajectories should be such that ca. fib % -1 at all times, i.e., &(r)  % -zn(r), 
and &(r) - &(r) % x .  With this in mind we~take as a variational trajectory 

za(r) = -Zb(t) = cosOo(r) = -tanhor. 4 4 )  



2176 

The frequency w, and the optimal trajectories for &(r) and &,(r), will be found 
variationally, given this form for za and Zb. This trajectory has the property that in = 
-osinZBo(t). If we recall that for an instanton calculation of the tunnel splitting, we 
should subtract the energy of the classical ground state from X(&(r) )  in (3, we see that 
each term in the action integral (5) is proportional to sin2&(t). We can thus write. 

S = S__sin2Bo(r)F(~~(r).4(r),o)dr ( 1 3  

Ji-Min Duan and Anupam Garg 

m 

where F is a function unspecified at present, but one plainly independent of &,b(r). If we 
minimize S with respect to &,b(t), we see immediately that the optimal trajectories are 

ba(z), 4 ( r )  = constants. (16) 

Noting that sin60 = sechor, the T integration in (15) can now be done immediately, and 
we obtain 

S = (2/w)F(4a, 4 9  0). (17) 

The problem is now reduced to minimizing an ordinary function. Let us parametrize 
and 4 as follows: 

We expect (as will be shortly confirmed) that &, - &, % n, i.e., that f i  << 1. It is therefore 
enough to expand F in powers of p up to terms of the second order. It is straightforward 
to show that this givest 

F =2K, -2K2cosh20r+Nhos(pa + p )  -2Jp2-2Kzsinh2rr(pp+fi2) .  (1% 

Although further analysis can be dane without backing into the answer, it is simplest to 
anticipate future results and assume that 

NAos > 2K2p sinh2a 

J >> KZ sinh 2a 

and show that these assumptions hold self-consistently. If this is done, the terms containing 
K2sinh2a in (19) can be neglected, and the extremization of F with respect to @ is trivial$. 
The optimal valuess of B and F are given by 

B* = Nfrws/4J (21) 

(22) F(LY, ,9*, 0) = 2K1 + $ I o 2 +  Nfiwspa - 2K2cosh2a. 

t We omit a constant term that gives a pure imaginary contribution to S. as it leads to the interference effects that 
are Fully accounted for in (6). 
$ It is startling at first that azS/ap2 (and also a2S/aa2) i s  negative, i.e., that our extremum is a marimum as a 
funtion of a and 8. Recall, though, that the instanton method is essentially a steepest-decent appmximation for 
3 Laplace integral, albeit a path integral, and here we are merely finding the critical point in the exponent. It still 
remains to expand this exponent and perform the remaining Gaussian integral along the steepest-decent path-thin 
is what gives the prefactor c in (6). The variation in (18) lies along the path of sleepest mcent, on which the 
exponent grows without bound. To find c we must integrate over real variations of and #b amund the answer 
given by (21) and (U), and we would indeed come to grief if we forgot this point! 
5 We shall denote the optimal values of Q and p by E*,  8'. 
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2Kzsinh201* = Nfiwsp .  (23) 

The first of the conditions in (20) is thus equivalent to p 2  < 1 ,  which is a basic condition 
for the validity of the model, and the second can be written as J >> Nfiwsp/2.  Given that 
p << 1, this condition holds automatically if p < 1, i.e., if 45 >> N R o s .  

It remains to minimize S with respect to w .  Using (17), aS/ao = 0 is seen to be 
equivalent to F - waF/aw = 0. This gives 

2Ki -2K2cosh2d = $ I o 2 .  (24) 

Using (23), this can be transformed into a quadratic equation for wz, with the solution 

$ I w ~ = ~ K I  - K z +  J p 2 - [ K : + 2 ( 2 K ;  - K 2 ) J p 2 +  J2p4] ' /2 .  (25) 

Note that w = 01 when p = 0. (Also, o = 0 when K2 = KI.) The other sign of the root 
can be seen to give w , ~ ,  which leads to a larger action. Finally, using (17) and (22)-(24), 
we obtain our variational estimate for the least action: 

SCi = 2Iw+ ( N A s p )  sinh-'(Nhwsp/2Kz). (26) 

We recall that I = ( N h s ) ' / 4 J .  
We must still show that 4J >> Nfiws for self-consistency. It is not difficult to show 

that the right-hand side of (25) does not exceed ~ ( K I  - K2). i.e., that w < 01, no matter 
what the value of p .  Thus the condition 45 >> NAws amounts to,(y/ki)1/2 >> 1 ,  which is 
a basic precondition for the model to be sensible at all. 

Equations (25) and (26) are the main result of our paper, and provide an estimate for 
the WKB exponent for all parameter values. Let us now examine this result in several limits. 

(i) p = 0. In~this case, o = wI and the action reduces to the exact answer (12) (modulo 
irrelevant corrections of relative order (k,  /j)I/'). 

(ii) The X-Y limit, kl - k2 -+ 0. In this case 

w2 % 0:(k2/k;)(l + [(ki - k 2 ) / k 2 ] j 2 p 4 / k ~  + ...) (27) 

where we have defined 

k; = k2 + j p 2 .  (28) 

Note that the expansion (27) is valid if (kl - k2) << j ~ ~ / ( k ; ) ~ .  The same condition with 
(k;)' replaced by kLk2 allows the inverse hyperbolic sine'in (26) to be expanded in a Taylor 
series, and the final result for the action can be written as 

Equation (29) is a modest extension of the answer found by Loss and co-workers [SI .  
Their analysis also holds close to the X-Y limit, and they obtain (see their (IO)) 

SCi = 210~r(l+ j p 2 / 2 k l )  (30) 
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which follows from (29) if we make a second expansion in powers of p .  neglect terms of 
order p4 ,  and replace kz by kl in the square root. Even if the correction terms in brackets 
are neglected. we believe that (29) is a better way of writing the answer. Firstly, it does not 
explicitly require the quantity Tp2/kz ,  which is a ratio of two small parameters, to itself be 
small. Secondly, by writing the p 2  correction with a k2 instead of kl in the denominator, 
the correction terms in k, - kz appear at higher order in p :  p4 as opposed to p2. 

In this case, one does not obtain formulas that 
are significantly simpler than (25) and (26) in general. If we assume, however, that 
kl >> i p 2  >> e / k l ,  then w can be expanded in powers of / p i ,  and the argument of 
the inverse hyperbolic sine is large compared to unity. We obtain 
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(iii) The Ising limir, kz -+ 0. 

$1 = 4 ( K t l ) ' i 2  + Nfisp In ( 4 p m / e K 2 ) .  

There are two noteworthy points about this result. First, it correctly shows that the action 
diverges and the tunnel splitting vanishes in the limit Kz + 0. In fact, the In Kz dependence 
in the action, is exactly as surmised by us [19] on the basis of the discrete WKB approach 
[IO, 171. In this view, the motion takes place on a square net (the [ma, mb) space) with a 
rectangular boundary. The sides of the rectangle differ in length by 2Nsp .  When Kz = 0, 
motion on the net is confined to straight lines m, + mb =constant and takes place via the 
J term. The Kz term gives rise to jumps between these lines, and connects every second 
line. To move from the comer m, = Sa, mb = -sb to the corner m, = -Sa, mb = sb 
requires at least N s p  jumpst. Perturbation theory then suggests that the tunnelling rate 
will be multiplied by a factor Ky (the energy denominator is rather hard to find), and 
this expectation is confirmed in (32). Second, (29) and (32) show that there is no simple 
formula in the p --f 0 limit that is uniformly valid for all values of K z / K * .  

In figures 2 and 3 we plot S,,/ZIw,, which gives the p # 0 multiplicative correction 
to the action. This is plotted versus k z / k ,  in figure 2, and versus p in figure 3 for several 
values of kz lk , .  Note that Sc1/21y is a function only of the combinations k2 /k l  and 
j p 2 / h .  

6. Conclusion 

We conclude in this section with some remarks about our work in comparison to [9], its 
strengths and limitations, and avenues for further work. 

Firstly, let us'compare our treatment with 191. The reader will no doubt have noted that 
the approximation zu = -zb is on the same footing as & x, and that one could also 
try to minimize the action expanded to quadratic order in (z, + Zb). One can start directly 
from (3, in fact, and integrate out za + Zb and the variable we call ,% provided one makes 
the self-consistently verifiable assumption that the frequency scale o on which the paths 
vary satisfies w << 71s. This leads to an action (or Lagrangian) for the Nee1 vector, f, that 
is much the same as (8) of [9] 

(33) L ~ e ~ 1 ~ =  $(@+sin 2 O @  ' 2  )-iNspcosO$+E(O,@) 

t Bec3use the K2 term only connects every other line, it is clearly impossible to do this unless 2Nsp is an even 
integer, i.e., unless N s p  is integral. This is a simple proof of the Knmers result. (6). as it permins to our problem. 
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Figure 3. The multiplicative correction to the action against the fraction? e x ~ s s  spin p ,  for 
t h e  different values of the transverse anisotropy. k z l k l .  We have taken j l k l  = 1000. 

where E ( @ ,  4) is the anisotropy energy for hb = -9 = i. (8, 4 are the polar coordinates 

There is thus a close relation between our model and that of [9 ] ,  and which one one 
prefers may be a matter of taste. In addition to be more direct, however, our model offers 
several other advantages. (i) It is obvious how to include external magnetic fields. Such 
fields lead to additional interference effects [lo], and while we believe that such effects are 
strongly suppressed by dissipation [8,20], should experiments ever reach the stage where 

of i.) ' 
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they can be seen, our model would surely be the correct way to analyse them. (ii) If one 
wishes to numerically solve the least-action trajectory, (33) offers no obvious advantage 
over (5 )  as the Euler-Lagrange equations form a fourth-order differential equation system 
in both cases. (iii) Equation (5) is the natural starting point for a calculation of  the prefactor 
c [16], as the measure for the path integral over -Aa and -Ab is known. This is not so for (33), 
although it could probably be found. (iv) Equation (5) generalizes easily to ferrimagnetic 
problems. 

Secondly, we believe that our variational approximation is rather good over the entire 
parameter space, as the form (14) accounts for all essential features of the trajectory. The 
one possible exception is the kz + 0 limit. One possible approach to a proper treatment of 
this limit is as follows. As 5 + foo, the KZ terms in (7) are negligible. It is easy to solve 
(7) when Kz = 0 even if p + 0 because SFot is then conserved. The instanton must match on 
to these solutions with S& = N p s  as T + -a, and with Sfot = -Nps  as r --f 00. There 
must exist an internal boundary layer connecting these solutions near 5 = 0, and where the 
Kz terms are essential. We have not succeeded in finding the structure of this boundary 
layer analytically. A numerical solution is under way and will be reported elsewhere. 

Thirdly, we note that while our work settles an important question of principle (namely, 
how tunnelling occurs at all for unequal sublattices), care should be exercised in extracting 
numerical values of exchange and anisotropy constants (7. k, , etc) from an experimental 
measurement of A alone. A is a very sensitive function of these.parameters. By the same 
token, the WKB experiment is very insensitive to the value of A, 'and this means that there 
is a large range of values that one can assign to the attempt frequency OAFM in (6). This in 
turn means that the exchange and anisotropy parameter values that one deduces in this way 
can have large and highly correlated errors. Further, our treatment leaves out surface and 
shape effects, which are certainly going to affect the numerical value of A significantly. 
Even more importantly, we have ignored dissipation. To be convinced that one is seeing 
MQC in an experiment, a study of the systematics of A with temperature and RF fields is 
likely to be far more useful [8]. 
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